Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 9(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-38031909

ABSTRACT

Horizontal gene transfer by plasmids can confer metabolic capabilities that expand a host cell's niche. Yet, it is less understood whether the coalescence of specialized catabolic functions, antibiotic resistances and metal resistances on plasmids provides synergistic benefits. In this study, we report whole-genome assembly and phenotypic analysis of five Salmonella enterica strains isolated in the 1980s from milk powder in Munich, Germany. All strains exhibited the unusual phenotype of lactose-fermentation and encoded either of two variants of the lac operon. Surprisingly, all strains encoded the mobilized colistin resistance gene 9 (mcr-9), long before the first report of this gene in the literature. In two cases, the mcr-9 gene and the lac locus were linked within a large gene island that formed an IncHI2A-type plasmid in one strain but was chromosomally integrated in the other strain. In two other strains, the mcr-9 gene was found on a large IncHI1B/IncP-type plasmid, whereas the lac locus was encoded on a separate chromosomally integrated plasmidic island. The mcr-9 sequences were identical and genomic contexts could not explain the wide range of colistin resistances exhibited by the Salmonella strains. Nucleotide variants did explain phenotypic differences in motility and exopolysaccharide production. The observed linkage of mcr-9 to lactose metabolism, an array of heavy-metal detoxification systems, and other antibiotic resistance genes may reflect a coalescence of specialized phenotypes that improve the spread of colistin resistance in dairy facilities, much earlier than previously suspected.


Subject(s)
Colistin , Salmonella enterica , Colistin/pharmacology , Salmonella enterica/genetics , Lactose , Serogroup , Drug Resistance, Bacterial/genetics , Plasmids/genetics
2.
Elife ; 112022 Nov 08.
Article in English | MEDLINE | ID: mdl-36346652

ABSTRACT

Public health emergencies like SARS, MERS, and COVID-19 have prioritized surveillance of zoonotic coronaviruses, resulting in extensive genomic characterization of coronavirus diversity in bats. Sequencing viral genomes directly from animal specimens remains a laboratory challenge, however, and most bat coronaviruses have been characterized solely by PCR amplification of small regions from the best-conserved gene. This has resulted in limited phylogenetic resolution and left viral genetic factors relevant to threat assessment undescribed. In this study, we evaluated whether a technique called hybridization probe capture can achieve more extensive genome recovery from surveillance specimens. Using a custom panel of 20,000 probes, we captured and sequenced coronavirus genomic material in 21 swab specimens collected from bats in the Democratic Republic of the Congo. For 15 of these specimens, probe capture recovered more genome sequence than had been previously generated with standard amplicon sequencing protocols, providing a median 6.1-fold improvement (ranging up to 69.1-fold). Probe capture data also identified five novel alpha- and betacoronaviruses in these specimens, and their full genomes were recovered with additional deep sequencing. Based on these experiences, we discuss how probe capture could be effectively operationalized alongside other sequencing technologies for high-throughput, genomics-based discovery and surveillance of bat coronaviruses.


Subject(s)
COVID-19 , Chiroptera , Animals , Phylogeny , Genetic Variation , Sequence Analysis, DNA , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Genomics
3.
Microorganisms ; 8(4)2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32316180

ABSTRACT

Salmonella Pathogenicity Island 1 (SPI-1) encodes a type three secretion system (T3SS), effector proteins, and associated transcription factors that together enable invasion of epithelial cells in animal intestines. The horizontal acquisition of SPI-1 by the common ancestor of all Salmonella is considered a prime example of how gene islands potentiate the emergence of new pathogens with expanded niche ranges. However, the evolutionary history of SPI-1 has attracted little attention. Here, we apply phylogenetic comparisons across the family Enterobacteriaceae to examine the history of SPI-1, improving the resolution of its boundaries and unique architecture by identifying its composite gene modules. SPI-1 is located between the core genes fhlA and mutS, a hotspot for the gain and loss of horizontally acquired genes. Despite the plasticity of this locus, SPI-1 demonstrates stable residency of many tens of millions of years in a host genome, unlike short-lived homologous T3SS and effector islands including Escherichia ETT2, Yersinia YSA, Pantoea PSI-2, Sodalis SSR2, and Chromobacterium CPI-1. SPI-1 employs a unique series of regulatory switches, starting with the dedicated transcription factors HilC and HilD, and flowing through the central SPI-1 regulator HilA. HilA is shared with other T3SS, but HilC and HilD may have their evolutionary origins in Salmonella. The hilA, hilC, and hilD gene promoters are the most AT-rich DNA in SPI-1, placing them under tight control by the transcriptional repressor H-NS. In all Salmonella lineages, these three promoters resist amelioration towards the genomic average, ensuring strong repression by H-NS. Hence, early development of a robust and well-integrated regulatory network may explain the evolutionary stability of SPI-1 compared to T3SS gene islands in other species.

4.
Can J Microbiol ; 65(1): 34-44, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30248271

ABSTRACT

A global medical crisis is unfolding as antibiotics lose effectiveness against a growing number of bacterial pathogens. Horizontal gene transfer (HGT) contributes significantly to the rapid spread of resistance, yet the transmission dynamics of genes that confer antibiotic resistance are poorly understood. Multiple mechanisms of HGT liberate genes from normal vertical inheritance. Conjugation by plasmids, transduction by bacteriophages, and natural transformation by extracellular DNA each allow genetic material to jump between strains and species. Thus, HGT adds an important dimension to infectious disease whereby an antibiotic resistance gene (ARG) can be the agent of an outbreak by transferring resistance to multiple unrelated pathogens. Here, we review the small number of cases where HGT has been detected in clinical environments. We discuss differences and synergies between the spread of plasmid-borne and chromosomal ARGs, with a special consideration of the difficulties of detecting transduction and transformation by routine genetic diagnostics. We highlight how 11 of the top 12 priority antibiotic-resistant pathogens are known or predicted to be naturally transformable, raising the possibility that this mechanism of HGT makes significant contributions to the spread of ARGs. HGT drives the evolution of untreatable "superbugs" by concentrating ARGs together in the same cell, thus HGT must be included in strategies to prevent the emergence of resistant organisms in hospitals and other clinical settings.


Subject(s)
Drug Resistance, Microbial/genetics , Gene Transfer, Horizontal , Conjugation, Genetic , Humans , Plasmids , Transduction, Genetic , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...